E1a induces the expression of epithelial characteristics

نویسنده

  • S M Frisch
چکیده

Cells closely resembling epithelia constitute the first specific cell type in a mammalian embryo. Many other cell types emerge via epithelial-mesenchymal differentiation. The transcription factors and signal transduction pathways involved in this differentiation are being elucidated. I have previously reported (Frisch, 1991) that adenovirus E1a is a tumor suppressor gene in certain human cell lines. In the present report, I demonstrate that E1a expression caused diverse human tumor cells (rhabdomyosarcoma, fibrosarcoma, melanoma, osteosarcoma) and fibroblasts to assume at least two of the following epithelial characteristics: (a) epithelioid morphology; (b) epithelial-type intercellular adhesion proteins localized to newly formed junctional complexes; (c) keratin-containing intermediate filaments; and (d) down-regulation of non-epithelial genes. E1a thus appeared to partially convert diverse human tumor cells into an epithelial phenotype. This provides a new system for molecular analysis of epithelial-mesenchymal interconversions. This effect may also contribute to E1a's tumor suppression activity, possibly through sensitization to anoikis (Frisch, S.M., and H. Francis, 1994. J. Cell Biol. 124:619-626).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent adenoviral infection induces production of growth factors relevant to airway remodeling in COPD.

Previous studies showed an association between latent adenoviral infection with expression of the adenoviral E1A gene and chronic obstructive pulmonary disease (COPD). The present study focuses on how the adenoviral E1A gene could alter expression of growth factors by human bronchial epithelial (HBE) cells. The data show that connective tissue growth factor (CTGF) and transforming growth factor...

متن کامل

Modulation of E-cadherin localization in cells expressing wild-type E1A 12S or hypertransforming mutants.

The adenovirus E1A 12S gene can immortalize primary epithelial cells such that they retain expression of epithelial cell characteristics. E1A 12S can also cooperate with an activated ras oncogene to cause tumorigenic transformation of primary cells. Specific substitution and deletion mutants of E1A 12S cooperate more efficiently with ras to produce foci with a hypertransformed phenotype, wherei...

متن کامل

Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...

متن کامل

Soluble uric acid induces inflammation via TLR4/NLRP3 pathway in intestinal epithelial cells

Objective(s): Hyperuricemia is a risk for cardiovascular and metabolic diseases, but the mechanism is ambiguous. Increased intestinal permeability is correlated with metabolic syndrome risk factors. Intestinal epithelial cells play a pivotal role in maintaining intestinal permeability. Uric acid is directly eliminated into intestinal lumen, however, the mechanism and e...

متن کامل

Altered expression of proteoglycans in E1A-immortalized rat fetal intestinal epithelial cells in culture.

Normal and E1A-immortalized rat fetal intestinal epithelial SLC-11 cells were compared for the characteristics of the 35S-labeled proteoglycans isolated from their cell-associated and secreted fractions. In comparison with control cells in primary culture, immortalized SLC-11 cells: (a) secreted larger amounts of radiolabeled proteoglycans; (b) contained larger amounts of membrane-intercalated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 127  شماره 

صفحات  -

تاریخ انتشار 1994